ЯДЕРНЫЙ СИНТЕЗ: УСТАНОВКИ С МАГНИТНЫМ УДЕРЖАНИЕМ - Definition. Was ist ЯДЕРНЫЙ СИНТЕЗ: УСТАНОВКИ С МАГНИТНЫМ УДЕРЖАНИЕМ
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist ЯДЕРНЫЙ СИНТЕЗ: УСТАНОВКИ С МАГНИТНЫМ УДЕРЖАНИЕМ - definition

Силовая установка с инерционным удержанием плазмы; Инерциальный термоядерный синтез; ИТС; Лазерный термояд; Лазерный термоядерный синтез
  • Этапы сжатия мишени
  • NIF]]
  • NIF]]

ЯДЕРНЫЙ СИНТЕЗ: УСТАНОВКИ С МАГНИТНЫМ УДЕРЖАНИЕМ      
К статье ЯДЕРНЫЙ СИНТЕЗ
Магнитные методы удержания плазмы исследуются в России, США, Японии и ряде европейских стран. Главное внимание уделяется установкам тороидального типа, таким, как токамак и пинч с обращенным магнитным полем, появившимся в результате развития более простых пинчей со стабилизирующим продольным магнитным полем.
Для удержания плазмы при помощи тороидального магнитного поля B. необходимо создать условия, при которых плазма не смещалась бы к стенкам тора. Это достигается "скручиванием" силовых линий магнитного поля (т.н. "вращательным преобразованием"). Такое скручивание осуществляется двумя способами. В первом способе через плазму пропускается ток, приводящий к конфигурации уже рассмотренного устойчивого пинча. Магнитное поле тока B??. -B. вместе с B. создает суммарное поле с необходимым закручиванием. Если B??B?, то получается конфигурация, известная под названием токамак (аббревиатура выражения "ТОроидальная КАмера с МАгнитными Катушками"). Токамак (рис. 5) был разработан под руководством Л.А.Арцимовича в Институте атомной энергии им. И.В.Курчатова в Москве. При B????B. получается конфигурация пинча с обращенным магнитным полем.
Во втором способе для обеспечения равновесия удерживаемой плазмы применяются специальные винтовые обмотки вокруг тороидальной плазменной камеры. Токи в этих обмотках создают сложное магнитное поле, приводящее к закручиванию силовых линий суммарного поля внутри тора. Такая установка, называемая стелларатором, была разработана в Принстонском университете (США) Л.Спитцером с сотрудниками.
Токамак. Важным параметром, от которого зависит удержание тороидальной плазмы, является "запас устойчивости" q, равный rB?/RB?, где r и R - соответственно малый и большой радиусы тороидальной плазмы. При малом q может развиваться винтовая неустойчивость - аналог неустойчивости изгиба прямого пинча. Ученые в Москве экспериментально показали, что при q 1 (т.е. B. B?) возможность возникновения винтовой неустойчивости сильно уменьшается. Это позволяет эффективно использовать выделяемое током тепло для нагревания плазмы. В результате многолетних исследований характеристики токамаков существенно улучшились, в частности за счет повышения однородности поля и эффективной очистки вакуумной камеры.
Полученные в России обнадеживающие результаты стимулировали создание токамаков во многих лабораториях мира, а их конфигурация стала предметом интенсивного исследования.
Омический нагрев плазмы в токамаке недостаточен для осуществления реакции термоядерного синтеза. Это связано с тем, что при нагреве плазмы сильно уменьшается ее электрическое сопротивление, и в результате резко снижается выделение тепла при прохождении тока. Увеличивать ток в токамаке выше некоторого предела нельзя, поскольку плазменный шнур может потерять устойчивость и переброситься на стенки камеры. Поэтому для нагрева плазмы используют различные дополнительные методы. Наиболее эффективные из них - инжекция пучков нейтральных атомов с высокой энергией и микроволновое облучение. В первом случае ускоренные до энергий 50-200 кэВ ионы нейтрализуются (чтобы избежать "отражения" их назад магнитным полем при введении в камеру) и инжектируются в плазму. Здесь они снова ионизуются и в процессе столкновений отдают плазме свою энергию. Во втором случае используется микроволновое излучение, частота которого равна ионной циклотронной частоте (частота вращения ионов в магнитном поле). На этой частоте плотная плазма ведет себя как абсолютно черное тело, т.е. полностью поглощает падающую энергию. На токамаке JET стран Европейского союза методом инжекции нейтральных частиц была получена плазма с ионной температурой 280 млн. кельвинов и временем удержания 0,85 с. На дейтериево-тритиевой плазме получена термоядерная мощность, достигающая 2 МВт. Длительность поддержания реакции ограничивается появлением примесей вследствие распыления стенок камеры: примеси проникают в плазму и, ионизуясь, существенно увеличивают энергетические потери за счет излучения. Сейчас работы по программе JET сосредоточены на исследованиях возможности контроля примесей и их удаления т.н. "магнитным дивертором".
Большие токамаки созданы также в США - TFTR, в России - T15 и в Японии - JT60. Исследования, выполненные на этих и других установках, заложили основу для дальнейшего этапа работ в области управляемого термоядерного синтеза: на 2010 намечается запуск большого реактора для технических испытаний. Предполагается, что это будет совместная работа США, России, стран Европейского союза и Японии.
Пинч с обращенным полем (ПОП). Конфигурация ПОП отличается от токамака тем, что в ней B????B?, но при этом направление тороидального поля вне плазмы противоположно его направлению внутри плазменного шнура. Дж.Тейлор показал, что такая система находится в состоянии с минимальной энергией и, несмотря на q < 1, хорошо защищена от наиболее грубых крупноразмерных магнитогидродинамических неустойчивостей. От более мелких, локальных неустойчивостей ее в значительной мере защищает т.н. "магнитный шир" - изменение направления силовых линий суммарного магнитного поля при движении по радиусу шнура. Эксперименты на установке "Зета" в Англии показали, что в плазме может спонтанно возникать обращенная конфигурация поля, и когда это происходит, плазма сильнее нагревается и проявляет повышенную устойчивость.
Достоинством конфигурации ПОП является то, что в ней отношение объемных плотностей энергии плазмы и магнитного поля (величина ?) больше, чем в токамаке. Принципиально важно, чтобы . было как можно больше, поскольку это позволит уменьшить тороидальное поле, а следовательно, снизит стоимость создающих его катушек и всей несущей конструкции. Слабая сторона ПОП состоит в том, что термоизоляция у этих систем хуже, чем у токамаков, и не решена проблема поддержания обращенного поля.
Стелларатор. В стеллараторе на замкнутое тороидальное магнитное поле налагается поле, создаваемое специальной винтовой обмоткой, навитой на корпус камеры. Суммарное магнитное поле предотвращает дрейф плазмы в направлении от центра и подавляет отдельные виды магнитогидродинамических нестабильностей. Сама плазма может создаваться и нагреваться любым из способов, применяемых в токамаке.
Главным преимуществом стелларатора является то, что примененный в нем способ удержания не связан с наличием тока в плазме (как в токамаках или в установках на основе пинч-эффекта), и потому стелларатор может работать в стационарном режиме. Кроме того, винтовая обмотка может оказывать "диверторное" действие, т.е. очищать плазму от примесей и удалять продукты реакции.
Удержание плазмы в стеллараторах всесторонне исследуется на установках Европейского союза, России, Японии и США. На стеллараторе "Вендельштейн VII" в Германии удалось поддерживать не несущую тока плазму с температурой более 5?106 кельвинов, нагревая ее путем инжекции высокоэнергетичного атомарного пучка.
Последние теоретические и экспериментальные исследования показали, что в большинстве описанных установок, и особенно в замкнутых тороидальных системах, время удержания плазмы можно увеличить, увеличивая ее радиальные размеры и удерживающее магнитное поле. Например, для токамака подсчитано, что критерий Лоусона будет выполняться (и даже с некоторым запасом) при напряженности магнитного поля ?50 ??100 кГс и малом радиусе тороидальной камеры ок. 2 м. Таковы параметры установки на 1000 МВт электроэнергии.
При создании столь крупных установок с магнитным удержанием плазмы возникают совершенно новые технологические проблемы. Чтобы создать магнитное поле порядка 50 кГс в объеме нескольких кубических метров с помощью охлаждаемых водой медных катушек, потребуется источник электроэнергии мощностью в несколько сотен мегаватт. Поэтому очевидно, что обмотки катушек необходимо делать из сверхпроводящих материалов, таких, как сплавы ниобия с титаном или с оловом. Сопротивление этих материалов электрическому току в сверхпроводящем состоянии равно нулю, и, следовательно, на поддержание магнитного поля будет расходоваться минимальное количество электроэнергии.
Реакторная технология. Устройство термоядерной электростанции схематично показано на рис. 6. В камере реактора находится дейтерий-тритиевая плазма, а окружает ее литиево-бериллиевый "бланкет", где происходит поглощение нейтронов и воспроизводится тритий. Вырабатываемое тепло отводится из бланкета через теплообменник в обычную паровую турбину. Обмотки сверхпроводящего магнита защищены радиационными и тепловыми экранами и охлаждаются жидким гелием. Однако не решены еще многие проблемы, связанные с устойчивостью плазмы и очисткой ее от примесей, радиационным повреждением внутренней стенки камеры, подводом топлива, отводом теплоты и продуктов реакции, управлением тепловой мощностью. См. также АТОМНАЯ ЭНЕРГЕТИКА; ТЕПЛООБМЕННИК.
Перспективы термоядерных исследований. Эксперименты, выполненные на установках типа токамак, показали, что эта система весьма перспективна в качестве возможной основы реактора УТС. На токамаках получены лучшие на сегодня результаты, и есть надежда, что при соответствующем увеличении масштабов установок на них удастся осуществить промышленный УТС. Однако токамак недостаточно экономичен. Для устранения этого недостатка необходимо, чтобы он работал не в импульсном, как сейчас, а в непрерывном режиме. Но физические аспекты этой проблемы пока еще мало исследованы. Необходимо также разработать технические средства, которые позволили бы улучшить параметры плазмы и устранить ее неустойчивости. Учитывая все это, не следует забывать и о других возможных, хотя и менее проработанных вариантах термоядерного реактора, например о стеллараторе или пинче с обращенным полем. Состояние исследований в этой области достигло этапа, когда имеются концептуальные реакторные проекты для большинства систем с магнитным удержанием высокотемпературной плазмы и для некоторых систем с инерциальным удержанием. Примером промышленной разработки токамака может служить проект "Ариес" (США).
Следующее поколение токамаков должно решить технические проблемы, связанные с промышленными реакторами УТС. Очевидно, что перед их создателями возникнут немалые трудности, но несомненно и то, что по мере осознания людьми проблем, касающихся окружающей среды, источников сырья и энергии, производство электроэнергии новыми рассмотренными выше способами займет подобающее ему место. См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ
.
Химический синтез         
Хими́ческий си́нтез — в узком смысле это процесс создания сложных молекул из более простых, или менее доступных молекул из более доступных. В широком смысле — это искусственное выполнение химических и физических реакций для получения одного или нескольких продуктов.
Синтез химический         

целенаправленное получение сложных веществ из более простых, основывающееся на знании молекулярного строения и реакционной способности последних. Обычно под синтезом подразумевается последовательность нескольких химических процессов (стадий).

В раннем периоде развития химии С. х. осуществлялся главным образом для неорганических соединений и носил случайный характер. Синтетическое получение сложных веществ стало возможным лишь после того, как были накоплены сведения об их составе и свойствах с развитием методов органического и физико-химического анализа. Принципиальное значение имели первые синтезы органических веществ - щавелевой кислоты и мочевины, осуществленные Ф. Вёлером в 1824 и 1828 (см. Органическая химия). Попытки синтеза аналогов сложных природных соединений, предпринятые в середине 19 в., когда стройной теории строения органических соединений не существовало, показали лишь принципиальную возможность синтеза таких веществ, как Жиры (П. Э. М. Бертло) и Углеводы (А. М. Бутлеров). Позднее уже на теоретической основе (см. Химического строения теория) были синтезированы индиго, камфора и другие сравнительно простые соединения, а также более сложные - некоторые углеводы, аминокислоты и пептиды. Начиная с 20-х гг. 20 в. плодотворное влияние на методологию С. х. оказали работы Р. Робинсона по получению ряда сложных молекул путями, имитирующими пути их образования в природе. С конца 30-х гг. наблюдается бурное развитие С. х. вначале в области стероидов, алкалоидов и витаминов, а затем в области изопреноидов, антибиотиков, полисахаридов, пептидов и нуклеиновых кислот. В 40-60-х гг. существенный вклад в развитие тонкого органического синтеза внёс Р. Б. Вудворд, осуществивший синтез ряда важных природных соединений (хинин, кортизон, хлорофилл, тетрациклин, витамин В 12 и др.). Примером больших успехов С. х. может служить также первый полный синтез гена аланиновой транспортной рибонуклеиновой кислоты (из дрожжей), осуществленный в 1970 Х. Г. Кораной (См. Корана) с сотрудниками.

Развитие органического синтеза происходит по следующим принципиальным направлениям производство важнейших промышленных продуктов (полимеров, синтетического топлива, красителей и пр.); получение различных физиологически активных веществ для медицины, сельского хозяйства, пищевой промышленности, парфюмерии; подтверждение строения сложных природных соединений и получение молекул с "необычным" строением для проверки и совершенствования теории органической химии; расширение арсенала реакций и методов С. х., включая использование катализаторов (См. Катализаторы), высоких энергий (см. Плазмохимия, Радиационная химия), а также более широкое использование (в строго контролируемых условиях) микроорганизмов и очищенных ферментов. В 70-е гг. появились работы по применению ЭВМ для целей оптимизации многостадийного С. х.

Разработка и совершенствование синтетических методов позволили получать многие важные химические продукты в промышленных масштабах. В неорганической химии (См. Неорганическая химия) - это синтезы азотной кислоты (См. Азотная кислота), Аммиака, серной кислоты (См. Серная кислота), соды (См. Сода), различных комплексных и других соединений. Налажено многотоннажное производство органических веществ, используемых в различных отраслях химической промышленности (см. Основной органический синтез), а также продуктов тонкого органического синтеза (гормонов, витаминов).

Лит.: Реутов О. А., Органический синтез, 3 изд., М., 1954; Перспективы развития органической химии, пер. с англ. и нем., под ред. А. Тодда, М., 1959; Крам Д., Хеммонд Дж., Органическая химия, пер. с англ., М., 1964. См. также лит. при статьях, ссылки на которые даны в тексте.

С. А. Погодин, Э. П. Серебряков.

Wikipedia

Инерциальный управляемый термоядерный синтез

Инерциальный управляемый термоядерный синтез — один из видов термоядерного синтеза, при котором термоядерное топливо удерживается собственными силами инерции. Идея заключается в быстром и равномерном нагреве термоядерного топлива, так, чтобы образовавшаяся плазма до разлёта успела прореагировать. Таким образом, при использовании данного принципа реактор будет импульсным.

Для D-T плазмы сжатой в 100 раз с температурой 108К и диаметром в 2 мм, время удержания соответствует 10−9 секунды, что создаёт значительную проблему мгновенности разогрева. Поэтому для разогрева используют различные высокомощные лазеры, в том числе лазеры сверхкоротких импульсов. Для увеличения плотности и времени удержания используется радиационная имплозия мишени, и прочие вторичные эффекты.

Для сжатия и нагрева мишени энергия передается через ее поверхностные слои с помощью высокоэнергетических лазерных лучей, электронов и ионов, хотя по ряду причин почти все опытные установки по состоянию на 2017 год используют лазеры. Перегретый внешний слой взрывается наружу, создавая реактивную силу действующего на остатки мишени, сжимая ее. Этот процесс должен создавать ударные волны, направленные внутрь мишени. Достаточно мощная серия ударных волн может сжать и нагреть топливо в центре так, что начнется термоядерная реакция.

Энергия, что высвобождается в результате такой реакции, способна нагревать окружающее топливо и, если температура будет достаточно высока, это также может начать термоядерную реакцию. Целью таких установок является возможность достичь термоядерного «горения», когда процесс высвобождения тепла вызывает звеньевую реакцию, затрагивающую значительную часть топлива. Обычный шарик топлива имеет размер булавочной головки и содержит около 10 миллиграммов топлива. На практике лишь незначительная часть этого топлива может быть задействована в термоядерной реакции, но если все это топливо будет использовано, это высвободит энергию, эквивалентную сгоранию барреля нефти.

Инерционный управляемый термоядерный синтез является одним из двух основных подходов в исследованиях термоядерной энергии, а второй — это магнитный управляемый термоядерный синтез.

Was ist ЯДЕРНЫЙ СИНТЕЗ: УСТАНОВКИ С МАГНИТНЫМ УДЕРЖАНИЕМ - Definition